Some quantum operators with discrete spectrum but classically continuous spectrum

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Quantum Operators with Discrete Spectrum but Classically Continuous Spectrum

A standard rule of thumb about whether a quantum Hamiltonian H = -A + V(x) has purely discrete spectrum or some continuous spectrum is the following. Look at the volume {(p, q) Ip* + V(q) <E} in R*“. If this volume is finite for all E, the standard wisdom is that H has only discrete spectrum. This standard wisdom also says that if this volume is infinite for some E < oo, then the spectrum is no...

متن کامل

Operators with Singular Continuous Spectrum

The Baire category theorem implies that the family, F,of dense sets G6 in a fixed metric space, X , is a candidate for generic sets since it is closed under countable intersections; and if X is perfect (has no isolated point), then A E F has uncountable intersections with any open ball in X. There is a long tradition of soft arguments to prove that certain surprising sets are generic. For examp...

متن کامل

Schrödinger Operators with Purely Discrete Spectrum

We prove −∆+V has purely discrete spectrum if V ≥ 0 and, for all M , |{x | V (x) < M}| < ∞ and various extensions.

متن کامل

Absence of absolutely continuous spectrum for some one dimensional random but deterministic Schrödinger operators

2014 We study Hw = d2/dx2 + VJx) and its discrete analog. For a large class of Vro which are intuitively random but nevertheless deterministic, we prove that is empty. Typical is V(x) = xn(cv)) where f (and thus V) is analytic and is a Poisson process. For example, if f decays exponentially but is not a reflectionless potential, we prove that is empty. RESUME. 2014 On etudie d2/dx2 + et son ana...

متن کامل

Some Schrödinger Operators with Dense Point Spectrum

Given any sequence {En}n−1 of positive energies and any monotone function g(r) on (0,∞) with g(0) = 1, lim r→∞ g(r) = ∞, we can find a potential V (x) on (−∞,∞) so that {En}n=1 are eigenvalues of − d 2 dx2 + V (x) and |V (x)| ≤ (|x| + 1)−1g(|x|). In [7], Naboko proved the following: Theorem 1. Let {κn}∞n=1 be a sequence of rationally independent positive reals. Let g(r) be a monotone function o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Physics

سال: 1983

ISSN: 0003-4916

DOI: 10.1016/0003-4916(83)90057-x